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ABSTRACT - A simple far-field phased-line model for the 
lateral leakage (e.g. the surface-wave one) in printed trans- 
mission lines is presented. It is based on replacing the gtid- 
ing strip(s) and/or guiding slot(s) by a phased line radiating 
in the background structure (usually a simple dielectric-slab 
guide or a partially filled parallel plate waveguide). Both 
full-line (infinitely extended) and half-line (semi-infinite) 
structures are considered. The model predicts the impossi- 
bility of real (bounded) modes that are faster than the corre- 
spending backgmund mode (into which leakage can take 
place) in both full-line and half-line structures. On the other 
hand, complex (leaky-wave) modes are shown to behave 
properly (improperly) outside their sector of definition in 
half-line (full-line) structures. Far-field distributions for a 
number of cases are gjven for the sake of illustration. 

I. INTRooUCTroN 

The study of ‘lateral leakage in printed transmission 
lines and periodic structures has attracted the interest of 
many researchers in the last two decades (see e.g. [I]-[4]). 
This has been mainly due to the associated power loss and 
cross-talk problems that severely degrade the performance 
of high density MIC and MMIC modules. 

Two of the well known facts related to the leakage issue 
are: 1. The impossibility of real (bounded) modes that are 
faster than the coiresponding background mode (in 
which leakage can take place). 2. The improper (non- 
physical) behavior of complex (leaky-wave) modes out- 
side their sector of definition. Such fundamental proper- 
ties have been rigorously proved for infinitely extended 
open guiding structures for both space-wave leakage (e.g. 
[5]-[7]) and surface-wave one. [e.g. [l]-[2]). On the other 
hand, the excitation of semi-infinite structures has been 
investigated only recently [81. It has been shown there 
that leaky-wave modes excited in some semi-infinite open 
guiding structures behave properly both inside and out- 
side their sector of definition. This has been explained as 
being due to the interference with the field generated by 
the additional source associated with the step-function 
behavior of the semi-infinite structure. 

In this contribution, we present a simple model for the 
far-field behavior of the real (bounded) and complex 
(leaky-wave) modes in bath infinite and semi-infinite 
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printed transmission lines. The model is based on replac- 
ing the guiding strip(s) and/or slot(s) by a phased line 
whose current has the same propagation constant as that 
of.the mode under consideration. The background strut- 
tore remains however unchanged. In order to avoid mix- 
ing up lateral (surface-wave) and space-wave leakage, 
only covered structures will be considered. The corre- 
sponding background structure is either homogeneously 
or partially tilled parallel plate waveguide (PPW). Ex- 
tending the validity of the model to uncovered structures 
is however straightforward. 

II. BASIC FOFZvIULATION 

Fig.1: A covered microstrip line 
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Fig. 2: Cartesian and polar coordinates 
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Let us consider the covered microstrip line shown in 
Fig. 1 as representative for laterally open structures. Re- 
ferring to Fig. 2, except for a very small sector in the vi- 
cinity of O=O, the strip thickness can be neglected in a far- 
field analysis of the structure. The strip can then be re- 
placed by an infinitesimally thin phased line whose cur- 
rent density is given by: 

J,(x, y, 2) = S(x)G(y-dP' 
1 

l 
(full-line) 

(1) 
u(z) (half-line) 

where fl is the propagation constant of the mode under 
consideration and u(z) is the unit step function. The 
Green’s function of the background structure (the par- 
tially filled PPW) with sc~urce and field (observation) 
point coordinates (r,~&y~) and (r,@y), respectively, is 
given by (see e.g.[7]): 

where v.Cy) has a sinusoidal dependence within the di- 
electric region and either exponential (for the first few 
values of n) or sinusoidal (for the higher values of n) in 
the air region and 

v”(r,s;r,,o,)= Ce’“‘8~80’J~(k~,r<)H(2)(k,,r,) (3) 
~=- 

with r, and r, being the smaller and larger value of (r,r,J, 
respectively, J, and H, (” being the Bessel and outgoing 
Hankel function or order m, respectively, and k. is the 
propagation constant of the nrh mode in the background 
structure. The latter is real (imaginary) when the corre- 
sponding background mode is propagating (evanescent). 

A typical modal field component is readily shown to be 
given by: 

F(r,8.~;p)=~~v.(v)v.(d)/.i(r,8;p) (4-a) 
n 

I,(r,e;/3, = $?““(r”(r;p, + I”(r$,) (4-b) 
riq 

r:(r:P, = H”‘(k,r)JJ,(k,ro)K,(r,;B)dr, (4-c) 

_ ” 

l’(r;P) = J’(H’Z’(k”S)J,(k,r)-J,(k,S)Hl’(k,l))K,(5;P)dTg 
” (4-d) 

It is readily shown that ~“(r;p) is given in terms of the 
Fresnel integrals [9] and rE(r;p) + (k”r)-’ as kmr --f m 

In the subsequent analysis, we will consider the possibil- 

ity of leakage into the nth background mode. This means 
that the operating frequency is chosen such that this mode 
is propagating and hence k. is real. 

A. Real Modes in Semi-Infinite (Half-Line) Structures 

The integral in (4-c) is readily shown to reduce to [9]: 

For a far-field consideration, knr + m and hence 

(6) 

I”‘(r;p) can then be neglected with respect to ~z(r;p, 
and (4-b) reduces to 

The above series has a Dim-delta behavior at 8 = +& for 
b < k,, which leads to an infinite radiated power and 
hence to the non-physicality of real modes with p c k,. 

On the other hand, for fl> k, , (7) converges uniformly 
to: 

Fig. 3 shows the angular dependence of (~,(r,s;p)I given 
by (8) for different values of Q. 

Fig. 3: 11.1 (arbitrary unit) for ~o=O.l (solid line), 170=0.2 
(----) and q,,=O.3 (- -) 

B. Real Modes in Infinite (Full-Line) Structures 

For this case, 1: (r;,@ reduces to: 

(9) 



Fig. 4: 11.1 (arbitrary unit) for q0=0.2 and &=0.2x 

For a far-field consideration, /E(r;P) + (k”r)’ for 
P < k 9 wbileIE(r;p) + (k,r)-’ for both ,B < kn and 
p > kn So, similar to the half-line structure, /a(r,S;/?) of 
the full-line structure diverges at 0 = +& for ,L? < km and 
converges uniformly to a physical radiation field (with a 
radial dependence (k”r)-’ ) for ,L? > k, 

It is worth noting here that as q0 increases, 1”(r,S;,& 
in (8) tends very rapidly to zero and becomes negligible 
with respect to that obtained by replacing /E(r;/?) by 
Ic(r;B,. The latter converges uniformly to (k,r)-’ as 

knr + -. Consequently, the far-field of both half-line and 
full-line .structwes behaves similarly for real modes with 
p>k,,,exceptfor pzk” (rl,ZO). 

The field is maximum at 0 = &. It is worth noting that 
the angle of maximum field & is given by 
+do =%e(cos-‘(,0/k,,)) and not by q&=cos-‘(Pe(/?)lk,). 

The latter expression has been always taken in the litera- 
ture as an approximation for weak leakage. The two ex- 
pressions are in fact very near if 
p”= -$@] << P’=%@) which characterizes weak 
leakage. 

D. Leaky-Wave Modes in Infinite Structures 

The field excited by the negative half-line (which ex- 
tends over the negative values of a~) is easily shown to 
modify IE(r;fi) into: 

C. Leaky-Wave Modes in Semi-Infinite Structures 

Th propagation constant of a leaky-wave mode is com- 
plex with a positive real part and a negative imaginary 
part: ,L? = p’- jp’.Equation (5-a) is valid for this case too, 
however with a complex value of @ 

Again, for a far-field consideration, /“‘(r,p) can be ne- 
glected with respect to IE(r;P) and the following ex- 
pression is obtained for ~~(r,s;p) : 

(10) 

A far-field consideration leads to IE(r;fl) given by (6). 
Again, lz(r;p) (which has an asymptotic value (k,r)-' ) 
can be neglected with respect to /z(r;P) resulting in 
I,(r,S;p) given by (7). Due to the positive value of 70, 
the series in (7) converges uniformlyfor all values of B: 

Replacing Hr’(k”r) by their asymptotic values for 
k-r --f m results in a series which diverges due to the 
terms cash rn~ and sinh rnqO We have tried to isolate the 
source of divergence into a term, which is familiar for 
leaky-wave modes. So, after some mathematical manipu- 
lations, the asymptotic value of I.(r,e;p) in (13) can be 
rewritten as: 

01) 
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where I=e? <t Such a convergent behavior contra- 
dicts the well known fact that leaky-wave modes converge 
within their sector of definition only (here for 0 < 0 <h) 
[5]. A similar behavior has been however observed re- 
cently in [B] using a full-wave near-field analysis. It has 
been explained there as being due to the effect of the step- 
function source accompanying any semi-infinite structure. 
Fig. 4 shows the angular dependence of Il,(r,B;fl)I given 
by(ll). 

where k, = km sin 4 The above expression resembles the 
familiar behavior of leaky-wave modes. It converges 
within the sector flz > 13m(k,l~ only. 

A simple far-field model for lateral leakage in printed 
transmission lines has been presented. The model has 
been applied to describe leakage in both semi-infinite and 
infinite structures. It predicts the impossibility of real 
fast-wave propagation in both semi-infinite and infinite 
structures. On the other hand, real slow-wave propagation 

(12) 

r,(r,s;p) -) 
e~~~~~+*.~~(l+~~s(e-~)+~-J~B’-“~’)(i+cos(B+~) 

k, sin @ (14) 

Comparing the leakage behavior in inlinite and semi- 
infinite structures, it is easily seen that the negative half- 
line only is responsible for the non-physicality of leaky- 
wave modes outside their sector of definition. This is 
however easily explained by the fact that the current of 
the negative half-l@ increases unlimitedly as z0 +-= 

III. CoNCLUsIoN 



behaves similarly in both structures. The model justify the [4] J. Zehentner, J. Machac and M. Migliozzi, IEEE Trans. 

recentlv published results that complex leaky-wave M7T, vol. MTT-46, pp. 378.386, 1998. 

propagation converges everywhere in semi-infinite strut- 
tures. The divergence of leaky-wave modes outside thei: 

[5] T. Tamir and AA. Oliner, Proc. IEE, vol. 110, pp. 310. 

sector of definition in infinite structures is predicted by 
334, 1963. 

the model as well. I61 R.E. Collin, Field Theory of Guided Waves, New York: 
McGraw-Hill. 1960. 

UI 

[21 

[31 

REFERENCES 

N.K. Das and D.M. Pozar, IEEE Trans. MTT, vol. MIT- 
39, pp. 54-63, 1991. 

D. N&em, J.T. Williams, D.R. Jackson and A.A. Oliner, 
IEEE Trans. MIT, vol. M’fT43, pp. 2549.2556, 1995. 

H. Shigesawa, M. Tsuji and A.A. Oliner, IEEE Trans. 
M7T, vol. Mn-43, pp. 3007.3019, 1995. 

[7] LB. F.&en and N. Marcuvitz, Radiation and Scattering of 
Waves, New York: IEEE Press, 1994. 

[8] F.J. Villegas, D.R. Jackson, J.T. Williams and A.A. Oliner, 
IEEE Trans. M77., vol. M’ll-47, pp. 443454, 1999. 

[9] M. Abramowitr and LA. Stegum, Handbook of Matkemati- 
cal Functions, New York: Dover Publications, 1970. 

672 


	MTT025
	Return to Contents


