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ABSTRACT — A simple far-field phased-line model for the
lateral leakage (e.g. the surface-wave one) in printed trans-
mission lines is presented. It is based on replacing the guid-
ing strip(s) and/or guiding slot(s) by a phased line radiating
in the background structure (usually a simple dielectric-slab
guide or a partially filled parallel plate waveguide). Both
full-line (infinitely extended) and half-line (semi-infinite)
structures are considered. The model predicts the impossi-
bility of real (bounded) modes that are faster than the corre-
sponding background mode (into which leakage can take
place) in both full-line and half-line structures. On the other
. hand, complex (leaky-wave) modes are shown to behave
properly (improperly) outside their sector of definition in
half-line (full-line) structures. Far-field distributions for a
number of cases are given for the sake of illustration.

[. INTRODUCTION

The study of *lateral leakage in printed transmission
lines and periodic structures has attracted the interest of
many researchers in the last two decades (see e.g. [1]-[4]).
This has been mainly due to the associated power loss and
cross-talk problems that severely degrade the performance
of high density MIC and MMIC modules.

Two of the well known facts related to the leakage issue
are: 1. The impossibility of real (bounded) modes that are
faster than the corfresponding background mode (in
which leakage can take place). 2. The improper (non-
physical) behavior of complex (leaky-wave) modes out-
side their sector of definition. Such fundamental proper-
ties have been rigorously proved for infinitely extended
open guiding structures for both space-wave leakage (e.g.
[5]-[7D and surface-wave one [e.g. [1]-[2]). On the other
hand, the excitation of semi-infinite structures has been
investigated only recently [8]. It has been shown there

that leaky-wave modes excited in some semi-infinite open .

guiding structures behave properly both inside and out-
side their sector of definition. This has been explained as
being due to the interference with the field generated by

the additional source associated with the step-function

behavior of the semi-infinite structure.

In this contribution, we present a simple model for the
far-field behavior of the real (bounded) and complex
(leaky-wave) modes in both infinite and semi-infinite

printed transmission lines. The model is based on replac-
ing the guiding strip(s) and/or slot(s) by a phased line
whose current has the same propagation constant as that
of ‘the mode under consideration. The background struc-
ture remains however unchanged. In order to avoid mix-
ing up lateral (surface-wave) and space-wave leakage,
only covered structures will be considered. The corre-
sponding background structure is either homogeneously
or partially filled parallel plate waveguide (PPW). Ex-
tending the validity of the model to uncovered structures
is however straightforward.

II. BASIC FORMULATION
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Fig.1: A covered microstrip line

Fig. 2: Cartesian and polar coordinates

wr

669

0-7803-7695-1/03/$17.00 © 2003 IEEE 2003 IEEE MTT-S Digest



Let us consider the covered microstrip line shown in
Fig. 1 as representative for latcrally open structures, Re-
ferring to Fig. 2, excepl for a very small sector in the vi-
cinity of ©=0, the strip thickness can be neglected in a far-
field analysis of the structure. The strip can then be re-
placed by an infinitesimally thin phased line whose cur-
rent density is given by:

1 (full - line)

J . v, =5 5 *d '1,6!
a3 2)=3(x)d(y—-de {u(z) (half - line)
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where f is the propagation constant of the mode under
consideration and w(z) is the unit step function. The
Green’s function of the background structure {the par-
tially filled PPW) with source and field (observation)
point coordinates (ry 6,yo) and (r, 8y), respectively, is
given by (see e.g.[7]):

G(r,0,y;r,,

1
By yo)=——
@ ¢ o

SV W (3 WV, (r.8:1,,6,)
n=l .

where v,(¥) has a sinusoidal dependence within the di-
electric region and either exponential (for the first few
values of n) or sinusoidal (for the higher values of 1) in
the air region and

V(58,00 = > ™Mk r )H P (k1) (3)
with r. and r. being the smaller and larger value of (r,rg),
respectively, J,. and H,/? being the Bessel and outgoing
Hankel function or order m, respectively, and k, is the
propagation constant of the »™ mode in the background
structure. The latter is real (imaginary) when the corre-
sponding background mode is propagating {(evanescent).

A typical modal field component is readily shown to be
given by:

F(r,6,%: ) :%sz Yy @, (7,6 B) (4-2)
Ln6:8) = Y e (120 )+ 190 B) (@-b)
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It is readily shown that I%(r;#) is given in terms of the
Fresnel integrals {91 and I2(rn /) — (k)" a8 kr—oo.
In the subsequent analysis, we will consider the possibil-

ity of leakage into the n* background mode. This means
that the operating frequency is chosen such that this mode
is propagating and hence k, is real.

A. Real Modes in Semi-Infinite (Half-Line) Structures

The integral in (4-c) is readily shown to reduce to [9]:

—im ‘m¢
[ L 2 (2) -
al) (s B} = H, (kr)k snp (3
0, (0<p 2 ) (B<k,)
qs:cos-l[i): ey (5b)
" g (11, >0 (f>k,)

For a far-field consideration, k,r — < and hence

2 —ikr-Zy i
18 Ay = |——e 4 6
g ) k., r k, sin ¢ )

I'2(r; £) can then be neglected with respect to 2(r; 8)
and (4-b) reduces to

‘ 2 kD] f
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The above series has a Dirac-delta behavior at & = +¢, for
B <k, which leads to an infinite radiated power and
hence to the non-physicality of real modes with g <k, .
On the other hand, for B>k, , (7) converges uniformly

to:
] 2 —jtke-D) 2e~
I(r,80;:8) — e 4 3
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Fig. 3 shows
by (8) for different values of #,.
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Fig. 3: | (arbitrary unit) for 7,=0.1 (solid line), 7,=0.2

() and 7=03 ¢ - )

B. Real Modes in Infinite (Full-Line) Structures
For this case, I (r; 8) reduces to:
26 " HD () S
D p) =

cos mg,
k,sing,

0 (B>k)

(B<k,)
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For a far-field consideration, 79(r;f) — (kr)? for
B<k,, whiler2(rg = k" for both f<k, and
B >k, . So, similar to the half-line structure, 1,(r,8;5) of
the full-line structure diverges at 6 =+¢, for § <k, and
converges uniformly to a physical radiation field (with a
radial dependence (k)" ) for g >k, .

It is worth noting here that as 5, increases, I (r.8.5)
in (8) tends very rapidly to zero and becomes negligible
with respect to that obtained by replacing % (r;8) by
I2(r; ). The latter converges uniformly to (k)" as
k,r — == . Consequently, the far-field of both half-line and
full-line structures behaves similarly for real modes with
B>k, ,exceptfor S=k (1,=0)

C. Leaky-Wave Modes in Semi-Infinite Structures

Th propagation constant of a leaky-wave mode is com-
plex with a positive real part and a negative imaginary
parl: §=p'- j#" Equation (5-a) is valid for this case tco,
however with a complex value of ¢

T
¢=C05—l(k£J=¢o+jnm 0<g, SE, 7, >0

n
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A far-field consideration leads to 7 (r; 8) given by (6).
Again, 12 (r, £y (which has an asymptotic value (k,r)™")
can be neglected with respect to I(r; 8 resulting in
1(r,8; ) given by (7). Due to the positive value of 7,
the series in (7) converges uniformly for all values of 8.

- itk =2
I1.(r.8,0)— 2 ’ ( l, + 1. —l]
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where A=¢™ <1. Such a convergent behavior contra-
dicts the well known fact that leaky-wave modes converge
within their sector of definition only (here for 0<8<¢,)
[5]. A similar behavior has been however observed re-
cently in [8] using a full-wave near-field analysis. It has
been explained there as being due to the effect of the step-
function source accompanying any semi-infinite structure,
Fig. 4 shows the angular dependence of |7,(».8;8) given
by (11).
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Fig. 4: |/l (arbitrary unit) for 7,=0.2 and ¢=0.27

The field is maximum at &=g¢,. It is worth noting that

_the angle of maximum ficld ¢ is given by
¢, = Re{cos™(B/k,)} and not by ¢,=cos™(Re{fl/k,).
The latter expression has been always taken in the litera-
ture as an approximation for weak leakage. The two ex-
pressions are in fact very near if
B =-3m{f} << f'=Re[p} which characterizes weak
leakage.

D. Leaky-Wave Modes in Infinite Structures

' The field excited by the negative half-line (which ex-
tends over the negative values of zg) is easily shown to
modify /8¢r; ) into:
e =2€7jm%H‘2) X cosm¢
w5 el "r)—_k,, sing
Again, for a far-field consideration, 1%'(r; #) can be ne-
glected with respect to 8 (r; ) and the following ex-
pression is obtained for 7 (r,8;5) :

1z

1(r8:8) = L_[H;”(k,,r) +23%¢ "THO(k,r)cos mpcos m

k. sin ¢ el (13) |
Replacing HPk, r) by their asymptotic values for
k,r —oo results in a series which diverges due to the
terms coshmy, and sinhm7), . We have tried to isolate the
source of divergence into a term, which is familiar for
leaky-wave modes. So, after some mathematical manipu-
lations, the asymptotic value of 1.(7.8;5) in (13) can be
rewritten as: ’

Eﬁ”*“)(l +cos(8— @) +e P H (1 4 cos(@+ ¢))

k,sing (14)
where k, =k sing. The above expression resembles the
familiar behavior of leaky-wave modes. It converges
within the sector 8% >|3m{k,) only.

Comparing the leakage behavior in infinite and semi-
infinite structures, it is easily seen that the negative half-
line only is responsible for the non-physicality of leaky-
wave modes outside their sector of definition. This is
however easily explained by the fact that the current of
the negative half-line increases unlimitedly as z, — —.

I(r.8.8)—

IT1. CONCLUSION

A simple far-field model for lateral leakage in printed
transmission lines has been presented. The model has
been applied to describe leakage in both semi-infinite and
infinite structures. It predicts the impossibility of real
fast-wave propagation in both semi-infinite and infinite
structures. On the other hand, real slow-wave propagation
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behaves similarly in both structures. The model justify the
recently published resuits that complex leaky-wave
propagation converges everywhere in semi-infinite struc-
tures. The divergence of leaky-wave modes outside their
sector of definition in infinite structures is predicted by
the model as well.
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